Statistics
Lecture 6

Class QZ 8
A box contains
4 Red 12 white and 24 Blue color balls. If you randomly Select one ball, find the Prob. that it is

1) Red

$$
P(\operatorname{Red})=\frac{4}{40}=\frac{1}{10}
$$

2) Not white

$$
\begin{aligned}
& P(\text { white })=\frac{12}{40}=\frac{3}{10} \\
& P(\overline{\text { white }})=1-P(\text { white })=1-\frac{3}{10}
\end{aligned}
$$

3) Red or white $=7$

$$
P(\text { Red or white })=\frac{4+12}{40}=\frac{16}{40}=\frac{2}{5}
$$

Class QZ 7
use the chart below

x	y
2	8
4	12
5	15
5	18
8	20

$x \rightarrow L 1$
$y \rightarrow L 2$

STAT - CALL

Find
$a=4.775 \approx 5$ $b=2.053 \approx 2\}$ whole \# $r^{2}=.869 \approx 87 \%$ Round to whee $\%$. $r=.932 \quad\}$ Round to 3-decimal
places

Suppose $y=24+5 x$ and $\bar{y}=62$
Predict y when $x=8$ if

1) r is significant
use Regression line

$$
y=24+5(8)=24+40=64
$$

2) r is not Significant use \bar{Y}

$$
\bar{y}=62
$$

More on Probability
Addition Rule
Keyword: OR
Single action event

$$
\begin{aligned}
& \text { Single action event } \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

Suppose $P(A)=.7, P(B)=.6, P(A$ and $B)=.4$

$$
P(\bar{A})=1-P(A)=.3
$$

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$$
=.7+.6-.4=.9
$$

Oct 3-7:18 PM
$P($ Ice Cream Only OR PopCorn Only $)=$

$$
=.15+.4=.55
$$

$$
\begin{aligned}
& P(\text { Ice } \text { (ream })=.35 \\
& P(P o p \operatorname{cor} n)=.6 \\
& P(\text { Ice Cream and Popcorn) }=.2 \\
& \text { Total }=1 \\
& P(\overline{\text { Ire Cream }})=1-P(\text { Icecream })=1-.35=.65
\end{aligned}
$$

Mutually Exclusive Events
"Disjoint events" $\Leftrightarrow P P(A$ and $B)=0$

Suppose $P(A)=.25$

$P(B)=.65$
$A \dot{E} B$ are M.E.E. $\rightarrow P(A$ and $B)=0$

$P(\bar{A})=1-.25=.75$
$P(\bar{B})=1-.65=.35$
Total $=1$
$P(A \circ r B)=$

$$
P(A)+P(B)-P(A \text { and } 1 B)=
$$

$P(\overline{A \circ r})$

$$
=1-P(A \circ r B)=.1
$$

To Complete SG I 11
You must watch the video called De Morgan's Law, located to the right of SEe 11 in my website

Oct 3-7:29 PM

Introduction to odds: odds in favor of event E are

There are 15 Females 25 Males. odds in favor of choosing a female \#Females : \# Females

$$
15 \quad 0 \quad 25
$$

Divide by $5 \rightarrow 3: 5$ odds against $5: 3$

A standard deck of playing cards
52 Cards 4 Aces 26 Red cards
odds in favor of Selecting an ace.
\# Aces : \# Aces

$$
4: 48 \rightarrow 1: 12
$$

odds against 12:1
odds in favor of Selecting a red Card

$$
\begin{aligned}
& \text { \#Red: \# Red } \\
& 26: 26 \rightarrow 1: 1
\end{aligned}
$$

If odds in favor of event E are $a: b$, then

$$
P(E)=\frac{a}{a+b} \quad P(\bar{E})=\frac{b}{a+b}
$$

Given odds in favor of event E are $7: 13$.

$$
P(E)=\frac{7}{7+13}=\frac{7}{20}=.35 \quad P(\bar{E})=\frac{13}{7+13}=\frac{13}{20}==.65
$$

If we have $P(E)$, then odds in favor of event E are

$$
P(E): P(\bar{E})
$$

then Simplify
Suppose $P(E)=.04$

$$
P(\bar{E})=1-.04=.96
$$

odds in favor of event E are

$$
\begin{aligned}
& P(E): P(\bar{E}) \\
& .04: .96 \\
& 4: 96 \\
& \text { ATM } 1:{ }^{1} \text { Enter } \\
& \text { ainst } \frac{1}{24} \\
& 24: 1: 24
\end{aligned}
$$

odds against

Suppose P (Dodgers win the World Series)

$$
P(w)=.25 \quad P(\bar{w})=.75
$$

odds in favor of them To win

$$
\begin{aligned}
& P(W): P(\bar{W}) \\
& .25: .75 \rightarrow 7: 3
\end{aligned}
$$

$\$ 1$ bet, You gain $\$ 3$
odds against $3: 1$
multiplication Rule:
Keyword: AND
Multiple - Action Event

Independent Events \Rightarrow when One outcome does not change the Prob. of next outcome
If A and B are independent events, then $P(A$ and $B)=P(A) \cdot P(B)$

A box has 4 Red and 6 Blue balls. P (draw one Red Ball in one attempt)

$$
=\frac{4}{10}=\frac{2}{5}
$$

Suppose we draw a balls, with replacement

$$
P(2 \operatorname{Red} \text { Balls })=\frac{4}{10} \cdot \frac{4}{10}=\frac{2}{5} \cdot \frac{2}{5}=\frac{4}{25}
$$

Suppose we draw 3 balls with replacement,

$$
P(\text { All Red })=\frac{4}{10} \cdot \frac{4}{10} \cdot \frac{4}{10}=\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5}=\frac{8}{125}
$$

A standard deck of playing Cards has 52 Cards, 4 Aces. If we draw one card

$$
P\left(A(e)=\frac{4}{52}=\frac{1}{13}\right.
$$

If we draw two cards with replacement

$$
P(\text { Both are aces })=\frac{4}{52} \cdot \frac{4}{52}=\frac{1}{13} \cdot \frac{1}{13}=\frac{1}{169}
$$

$$
P(\text { we don't get any aces })=\frac{48}{52} \cdot \frac{48}{52}=\frac{144}{169}
$$

Ace $4 \quad 48 \div 52$ ख 48 圆 52
Are 48 Math 1:1 Frack Enter

Suppose $P(A)=.3, P(B)=.4$
$A \dot{\xi}_{1} B$ are independent events

$$
\begin{aligned}
& P(\bar{A})=.7 \quad P(\bar{B})=.6 \\
& P(A \text { and } B)=P(A) \cdot P(B) \\
& \\
& =(.3)(.4)=.12
\end{aligned}
$$

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$$
=.3+.4-.12=.58
$$

$$
.3-.12=-18
$$

$$
.4-12=.28
$$

Total: 1

$$
P(A \text { only OR Bonly })=.18+.28=.46
$$

Prob. of Passing a Math class is .4 Let's randomly select 2 students. $\left.\begin{array}{c}P P \\ P \bar{P} \\ \bar{P} P \\ \bar{P} \bar{P}\end{array}\right\}$ Sample Space $\Rightarrow \begin{aligned} & \text { A complete list } \\ & \text { of all possible } \\ & \text { out comes. }\end{aligned}$ $P(P P)=(.4) \cdot(.4)=.16 \checkmark$ verify $P(\bar{P} P)=(.6) \cdot(.4)=.24$, total Prob. $P(P \bar{P})=(.4)(.6)=24$

$$
P(\bar{P} \bar{P})=(.6) \cdot(.6)=. .36
$$

Oct 3-8:33 PM

A loaded coin is tossed 3 times.

$\longrightarrow P(T)=.3, P(H)=.7$
Tree Diagram

$$
\begin{aligned}
& P(\text { All tails })=(.3)(.3)(.3)=0.027 \\
& P(\text { All reads })=(.7)(.7)(.7)=.343
\end{aligned}
$$

A box has 8 nickels is. 2 quarters. Draw a Coins with replacement

$$
P(10 \Phi)=P(N N)=(.8)(.8)=.64
$$

$$
P(30 \Phi)=P(N Q \text { OR } Q N)=(.8)(.2)+(.2)(.8)
$$

$$
=.32
$$

$$
P(504)=P(Q Q)=(.2)(.2)=.04
$$

Oct 3-8:46 PM

4 Females 亡. 6 Males
we need to select a people
FF $\quad P$ (Both are Females) $=$ FM

$$
\frac{4}{10} \cdot \frac{3}{9}=\frac{2}{5} \cdot \frac{1}{3}=\frac{2}{15}
$$ $M F$

MM $\quad P($ Both are males $)=$

$$
\frac{x_{6}^{6}}{10_{2}} \cdot \frac{\frac{1}{5}}{\frac{9}{3}}=\frac{1}{3}
$$

$P(I F \dot{\varepsilon} .7 M)=$
$P(F M$ or $M F)=\frac{4}{10} \cdot \frac{6}{9}+\frac{6}{10} \cdot \frac{4}{9}$

$$
=\frac{8}{15}
$$

A deck of cards has 52 cards, 12 fare cards. Draw 2 cards without replacement

$$
\begin{aligned}
& P(\text { Both are face cards) }=P(F F)
\end{aligned}
$$

$$
\begin{aligned}
& P \text { (we get no face Cards) }=
\end{aligned}
$$

$$
\begin{aligned}
P(\bar{F} \bar{F}) & =\frac{40}{52} \cdot \frac{39}{51} \\
& =\frac{10}{17}
\end{aligned}
$$

Class QR 9
Given $\quad P(A)=.7, P(B)=.1$
A and B are disjoint events.

1) Draw Venn Diagram

2) find $P($ (And $B)$
3) find $P(A \circ r B)$

$$
\begin{aligned}
& =.7+.1-0 \\
& =.8
\end{aligned}
$$

